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ABSTRACT

There are numerous large-scale applications requiring mesh adaptivity, e.g., computational fluid dynamics and weather
prediction. Parallel processing is needed for simulations involving large-scale adaptive meshes. In this paper, we
propose a parallel variational mesh quality improvement algorithm for use with distributed memory machines. Our
method parallelizes the serial variational mesh quality improvement method by Huang and Kamenski. Their approach
is based on the use of the Moving Mesh PDE method to adapt the mesh based on the minimization of an energy
functional for mesh equidistribution and alignment. This leads to a system of ordinary differential equations (ODEs)
to be solved which determine where to move the interior mesh nodes. An efficient solution is obtained by solving
the ODEs on subregions of the mesh with overlapped communication and computation. Strong and weak scaling
experiments on up to 128 cores for meshes with up to 160M elements demonstrate excellent results.

Keywords: parallel mesh quality improvement, variational method, tetrahedral mesh, distributed
computing

1. INTRODUCTION

There are numerous large-scale scientific applications
requiring adaptive meshes with millions to billions
of elements, e.g., [1, 2, 3, 4]. Such large computa-
tional simulations are possible due to the availabil-
ity of massively parallel supercomputers which inte-
grate central processing units (CPUs) and accelera-
tors, such as graphics processing units (GPUs), Phi co-
processors, and field programmable gate arrays (FP-
GAs). New parallel mesh generation, parallel mesh
adaptation, and parallel mesh quality improvement al-
gorithms have been developed to take advantage of
these novel architectures.

Although there are numerous parallel mesh genera-
tion algorithms [5], only a few parallel mesh quality
improvement algorithms have been developed [6, 7,

8, 9, 10]. The methods presented in [6, 7, 8, 11] are
solely devoted to improving the mesh quality, whereas
the ones in [9, 10] combine mesh untangling and mesh
quality improvement procedures. However, to the best
of our knowledge, no parallel variational mesh adap-
tation methods have been developed.

Since very few parallel mesh quality improvement al-
gorithms and no parallel mesh adaptation algorithms
have been proposed, we also review the serial meth-
ods developed for such purposes. The vast major-
ity of sequential mesh quality improvement and mesh
adaptation methods employ optimization techniques
to improve the mesh quality or to adapt the mesh
to changes in the geometry or the physics of the ap-
plication. Optimization-based mesh quality improve-
ment and mesh adaptation algorithms adjust the po-



sitions of the node while preserving the mesh topology
[12, 13, 14, 15, 16, 17, 18, 19, 20].

Variational methods for mesh adaptation and mesh
quality improvement have recently received consider-
able attention from the meshing community (e.g., [19,
20, 21, 22, 23, 24]). Whereas most optimization-based
mesh quality improvement algorithms use gradient-
based techniques to minimize an objective function,
Huang and Kamenski [19, 20] instead use the Moving
Mesh PDE (MMPDE) method to discretize and find
the minimum of an appropriately constructed meshing
functional [25, 26, 27]. The minimizer of the meshing
functional is a bijective mapping which generates an
improved quality mesh as an image of the initial mesh.

In this paper, we present a novel, efficient parallel vari-
ational mesh quality improvement algorithm and the
corresponding implementation for distributed mem-
ory machines. Our parallel method is based on the
sequential method by Huang, Ren, and Russell [21]
and the recent implementation by Huang and Kamen-
ski [20]. The method finds the minimizer of a meshing
functional by solving a system of ordinary differential
equations (ODEs) for the nodal velocities. We first re-
view the key concepts of variational mesh methods and
the implementation of the sequential MMPDE method
in Section 2. In Section 3, we describe our parallel
variational mesh quality improvement method for dis-
tributed memory systems, along with the implemen-
tation. Our method employs a domain decomposi-
tion approach in order to divide the workload among
the cores. We reorganize the computation within each
subregion in order to facilitate the overlap of commu-
nication with computation. We analyze the computa-
tional complexity of the method in Section 4. We carry
out numerical experiments on tetrahedral meshes and
determine the strong and weak scaling properties of
the proposed method. The numerical experiments and
the associated results are discussed in Section 5. We
present our conclusions on the work and several direc-
tions for future work in Section 6.

2. VARIATIONAL MESH ADAPTATION
METHODS

In this section, we present an overview of variational
mesh adaptation and the corresponding methods. In
the variational approach, an adaptive mesh is gener-
ated as the image of a reference mesh under a coordi-
nate transformation. The coordinate transformation is
determined as the minimizer of a meshing functional.
The mesh concentration is typically controlled through
a scalar or a matrix-valued function. This is referred
to as the metric tensor or monitor function. Monitor
functions are defined based on error estimates and/or
physical considerations.

Several authors have reported on variational mesh
adaptation methods with various types of meshing
functionals. For example, Winslow [28] developed
an equipotential method based on variable diffusion.
Brackbill and Saltzman developed a method combin-
ing mesh concentration, smoothness, and orthogonal-
ity [29]. Dvinsky developed another approach based
on the energy of harmonic mappings [30]. Variational
methods based on the conditioning of the Jacobian
matrix of the coordinate transformation were devel-
oped by Knupp [15] and Knupp and Robidoux [26].
More recently, equidistribution and alignment condi-
tions were used by Huang [31] and Huang and Rus-
sell [32] to develop mesh adaptation methods.

The Moving Mesh PDE (i.e., MMPDE) method, which
was proposed by Huang, Ren, and Russell in 1994 [21]
is the basis upon which many other variational mesh
adaptation methods have been developed. In 2015,
Huang and Kamenski developed a more efficient im-
plementation of the serial MMPDE method [20].

2.1 New implementation of the variational
mesh adaptation method

In this subsection, we focus on Huang and Kamen-
ski’s new implementation of the MMPDE method [20].
Consider a domain Ω ⊂ Rd(d ≥ 1) and Th = {K} be
a simplicial mesh containing N elements and Nv ver-
tices on Ω. Denote the affine mapping FK : K̂ → K
and its Jacobian matrix by F ′K , where K̂ is the master
element. Let the edge matrices for K and K̂ be EK

and Ê. Assume that a metric tensor (or a monitor
function) M = M(x) is given on Ω which provides di-
rectional and magnitude information for the elements.

A key idea of the MMPDE method is to view an adap-
tive mesh as a uniform one in the metric M such that
the following two properties hold. First, the size of all
elements K in the metric MK is the same. Second, all
elements K in the metric MK are similar to K̂.

These two properties give rise to the equidistribution
and alignment conditions:
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Then an energy function for the equidistribution and



alignment conditions is given by
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Minimization of the energy function will result in a
mesh that closely satisfies the equidistribution and
alignment conditions.

The MMPDE moving mesh equation is then defined
as the (modified) gradient system of I[Th], i.e.,

dxi

dt
= −det(Mi)

1
d

τ

∂I[Th]

∂xi
, i = 1, ..., Nv,

where τ > 0 is a parameter for adjusting the response
time scale of mesh movement to the change in M.

For mesh quality improvement, we choose M = I,
which means we want the mesh to be as uniform as
possible in the Euclidean space. In this case, the mov-
ing mesh equation reads as

dxi

dt
=
∑

K∈ωi

|K|vK
iK , i = 1, ..., Nv, (1)

where ωi is the element patch associated with xi, iK
is the local index for xi on K, and viK is the local
nodal velocity contributed by K to the node xi. The
analytical formula of the local nodal velocities is given
in [20]. In the case when M = I, (vK
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The partial derivatives in equation (2) are obtained
by substituting M = I into the formula for GK shown
above and then differentiating with respect to J and
det(J).

The nodal velocities of the boundary nodes are set
to 0. They can also be modified to let the boundary
nodes slide along the boundary.

To determine the locations of the interior nodes, Equa-
tion (1) is then solved using the adaptive fourth-order
Runge-Kutta-Fehlberg ODE solver (RKF45). It has
been shown analytically and numerically in [33] that

the mesh governed by the MMPDE moving mesh equa-
tion will stay nonsingular (i.e., no crossing nor tangling
will occur) if it is nonsingular initially.

3. PARALLEL VARIATIONAL MESH
QUALITY IMPROVEMENT

ALGORITHM

In this section, we present our novel parallel algorithm
and implementation for distributed memory systems
based on the moving mesh method described in the
previous section.

3.1 Sequential algorithm

For the sequential algorithm, the adaptive fourth-
order Runge-Kutta Fehlberg ODE solver (RKF45)
with fifth-order error estimator is employed to solve
(1) (see [34] for details). The RKF45 method approx-
imates the solution of an ODE system in the form

dy

dt
= f(t, y) (3)

using a non-constant, optimal step size dt in each iter-
ation. The method determines the step size dt in each
iteration by comparing a fourth-order approximation,
yi+1, and a fifth-order approximation, zi+1, to the so-
lution. These approximations are given by

yi+1 = yi +
25
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k5, (4)

and
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respectively. Here
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The error is given by the∞-norm of the difference be-
tween the two solutions, i.e., err = ‖zi+1− yi+1‖∞. If
err is smaller than a given tolerance, tol, then the so-
lution yi+1 is accepted. One can show that the optimal
step size is given by q ∗ dt, where

q = 0.84

(
tol ∗ dt
err

) 1
4

. (7)

Algorithm 1 Sequential variational mesh quality im-
provement algorithm

1: Input: nodal coordinates, topology, boundary
nodes

2: Define: Initial dt, tfinal, tol, t = 0, i = 0
3: while (t < tfinal) do
4: for each node in the mesh do
5: Compute k1−k6 from equations (6) and the

ODE (1)
6: end for
7: Compute yi+1, zi+1 (equations (4) and (5)) and

error (err)
8: dt = q ∗ dt where q is given by equation (7)
9: if (err < tol) then

10: Accept yi+1 as a solution
11: else
12: dt = max(q ∗ dt, 0.1 ∗ dt);
13: end if
14: t = t+ dt
15: end while
16: Output: new nodal coordinates

In Algorithm 1, (i.e., the algorithm for the method
proposed in [20]), the calculation of the nodal veloc-
ities is directly related to the calculation of the ki,
which is the most computationally-intensive step (i.e.,
step 5). To calculate the values, ki, in the RKF45
method, the algorithm loops over all elements calculat-
ing partial nodal velocities for each node. This require-
ment is the basis for our distributed data approach in
the parallel algorithm.

3.2 Overview of the parallel algorithm

In this subsection, we highlight three important as-
pects of our parallel algorithm (Algorithm 2): the dis-
tribution of the workload, the communication strat-
egy, and the termination criteria. Although there ex-
ist multiple strategies to distribute the work among
cores, we employ a domain decomposition approach
in which we divide the domain into p regions, where
p is the number of cores (i.e., steps 4 and 5 in Al-
gorithm 2). Each region is (ideally) composed of one
connected component. We use this approach because
according to Equation (2) the nodal velocity of a par-
ticular node xm, such as the one in Fig. 1, is cal-
culated based on the edge matrices of elements E1,

E2, E3, E4, and E5. Therefore, a decomposition of
the elements of the domain into regions is the strat-
egy that yields the best performance. To accomplish
this, we use METIS [35], which is a library for parti-
tioning meshes and graphs. We employed the mpmetis
scheme to partition the mesh into regions so that each
region has roughly the same number of elements and
the number of interfaces between regions is minimized.

Once we have the mesh partition, core P0 reads and
distributes the information concerning the topology
and nodal coordinates to the rest of the cores. In this
step, each core creates a list (SharedNodes_p[]) whose
size is equal to the number of nodes along partition
boundaries (i.e., the number of shared nodes). Each
core stores partial nodal velocities to specific locations
in the list and fills-in the rest with zeros.

Whereas each core computes the new nodal positions
for the interior nodes of its corresponding region, the
new nodal positions for nodes along partition bound-
aries (corresponding to the shared nodes) requires
communication and verification steps (i.e., steps 17
and 19 in Algorithm 2). In our parallel algorithm,
all communication steps are reduction operations. To
compute the new nodal positions for shared nodes,
we perform a reduction operation (summation) over
the list SharedNodes_p[] in which we store the par-
tial nodal velocities of the shared nodes. We also need
communication steps to calculate the global error (i.e.,
step 23 in Algorithm 2) and the average mesh quality
(i.e., step 31 in Algorithm 2). To calculate the global
error, we require a reduction operation to calculate the
maximum. We also require a summation reduction for
the average mesh quality.

Finally, we employ a tetrahedral mesh quality metric
in order to evaluate the quality of the mesh on each
iteration. We utilize the mesh quality information in
the termination criteria. The mesh quality metric im-
plemented in our algorithm is given by

q =
CR

3 ∗ IR , (8)

where CR is the circumsphere radius and IR is the
inscribed sphere radius. For this metric, q ∈ [1,∞)
where q = 1.0 is the optimal mesh quality. We termi-
nate the parallel variational mesh quality improvement
algorithm when the difference in the average mesh
quality on two consecutive iterations is small (i.e., less
than a specified tolerance). Also, note that we do not
use unnecessary synchronization calls (MPI Barrier)
in the algorithm. However an implicit synchronization
might be performed (if necessary) with MPI Wait.
MPI Barrier is only used for timing purposes.



Figure 1: Patch of elements with xm as one of its ver-
tices.

3.3 Overlapping communication with
computation

As we mentioned before, the most computationally-
intensive step in the parallel variational mesh qual-
ity improvement algorithm is the computation of the
nodal velocities. For the case in Fig. 1, core Pi is
unable to compute the nodal velocity for node xm be-
cause the core does not have access to elements E1

and E5. Therefore, Pi calculates only a portion of the
nodal velocity at this node. The same is true for core
Pj .

According to the previous description, we design the
parallel algorithm such that every core Pi loops once
over its own elements to calculate the nodal veloci-
ties for the interior nodes within a region. However,
for shared nodes, the nodal velocities are incomplete.
Therefore, in this case, e.g., for xm in Fig. 1, cores
Pi and Pj store the partial nodal velocities in the
SharedNodes_p[] list. Finally, the nodal velocities for
the shared nodes require a reduction operation (sum-
mation) over SharedNodes_p[] and a verification step
(i.e., steps 17 and 19 in Algorithm 2).

It is possible to overlap the communication and com-
putation and reduce the overall run time by reorganiz-
ing the data in the data structures. To this end, each
core splits the list of local elements Elements_proc[]

into two new lists, i.e., Elements_proc1[] and
Elements_proc2[] (i.e., step 7 in Algorithm 2). The
algorithm stores the elements that contain at least one
shared node in the data structure Elements_proc1[],
whereas the elements whose nodes are interior nodes
are stored in Elements_proc2[]. Thus, we calcu-
late the nodal velocities in two steps (i.e., steps 15
and 18 in Algorithm 2). After the first step, the
algorithm will have partial nodal velocities for the
shared nodes. Therefore, we can initiate the commu-
nication using the non-blocking collective command

Algorithm 2 Parallel algorithm for variational mesh
quality improvement

1: Input: nodal coordinates, topology, boundary
nodes, domain decomposition information

2: Define: Initial dt, errtol, tol, and t = 0
3: // Mesh partition, and data structure creation
4: Partition the mesh using METIS
5: Create and distribute data structures among cores
6: Compute: local and global mesh quality Qnew us-

ing MPI Iallreduce
7: Split elements into two sets, Elements_proc1[]

and Elements_proc2[]

8: Check that the communication is completed
(MPI Wait)

9: Set Qold = 1.0
10: // Solve differential equation (1)
11: for all p cores in parallel do
12: while (|Qold −Qnew| > errtol) do
13: Qold = Qnew;
14: for i=1 to 6 do
15: Compute ki from equations (6) using

only nodes from Elements_proc1[]

16: Copy shared nodes (from ki) to a global
shared node array in p

17: Communicate and sum all global shared
node arrays (MPI Iallreduce)

18: Compute ki from equations (6) using
only nodes from Elements_proc2[]

19: Check that the communication has been
completed (MPI Wait)

20: Update ki with new shared node infor-
mation

21: end for
22: Compute yi+1, zi+1 (equations (4))
23: Compute local error (err) and apply

MPI Allreduce to obtain global error
24: dt = q ∗ dt where q is given by equation (7)
25: if (err < tol) then
26: Accept yi+1 as a solution
27: else
28: dt = max(q ∗ dt, 0.1 ∗ dt)
29: end if
30: t = t+ dt
31: Compute: local and global mesh quality

Qnew using MPI Iallreduce
32: end while
33: end for
34: Output: New nodal coordinates

MPI Iallreduce which immediately calculates the
nodal velocities for the interior nodes (i.e., step 18 in
Algorithm 2). Once the algorithm finishes the cal-
culation of nodal velocities for the interior nodes, the
algorithm checks to see if the communication has com-
pleted using MPI Wait (i.e., step 19 in Algorithm 2).
Finally, the algorithm updates the nodal velocities for



the shared nodes (i.e., step 20 in Algorithm 2).

4. PARALLEL RUNTIME ANALYSIS

In this section, we discuss the runtime performance of
the parallel algorithm described in the previous sec-
tion. In particular, we analyze the average parallel
runtime.

First, we assume the partition of the initial mesh is
given to the algorithm as input data. Recall that we
use METIS to accomplish this step. Once the algo-
rithm reads the input data, core P0 distributes the in-
formation among cores according to the partition file.
This overhead computation is performed sequentially
and occurs just once throughout the execution of the
algorithm. We assume this step takes tN time.

Since we performed the mesh partitioning step over
the elements of the mesh, assuming that N is the to-
tal number of mesh elements, each core contains (ide-
ally) dN/pe elements. With this information, the split-
ting operation performed within each region to overlap
communication with computation takes dN/pe(d+ 1)
operations, where d is the dimension. This step is also
performed once in the algorithm.

For the next step, we solve the differential equation (1)
by calculating the values ki. To calculate ki, the algo-
rithm loops over the mesh elements. If the maximum
time to calculate the nodal velocity for each node is
tvn, then the total serial time to calculate the nodal
velocities is N(d+ 1) tvn. Therefore, the parallel time
is dN/pe(d + 1) tvn. Moreover, we define the num-
ber of elements containing at least one shared node in
the region corresponding to core Pi as N

(Pi)
sh , and the

number of elements containing only interior nodes as
N

(Pi)
int . Note that dN/pe = N

(Pi)
sh +N

(Pi)
int . For the com-

munication process, first, we extract the local shared
nodes. Assuming the time to copy one node from the
local to the global list is tc and the number of shared
nodes in the mesh is Vsh, then this step takes Vsh tc
time. Similarly, assuming that the time to send a vec-
tor with Vsh nodes is ts, the communication process
takes log2(p) ts + p Vsh tc. Note that this was imple-
mented as a non-blocking communication process us-
ing the computation time N

(p)
int(d + 1) tvn to overlap

communication and computation. Thus, the time to
compute these two processes is Tctotal, where

Tctotal =

{
Tint, if Tint > Tcomm

Tint + |Tint − Tcomm|, otherwise.

(9)

Here Tint = N
(p)
int(d+ 1) tvn and Tcomm = log2(p) ts +

p Vsh tc.

To copy the information from the global to the local
list in each core costs Vsh tc. Assuming that the time
to compute the error in each coordinate of each node

is te, the total serial time is N(d+ 1)d te. In parallel,
it is dN/pe(d + 1)d te plus the time to calculate the
maximum error among cores which is log2(p). Finally,
if tq is the time to calculate the quality of one ele-
ment, then Ntq is the time to calculate the quality for
the serial algorithm, and dN/petq is the time for the
parallel one. The time to calculate the average qual-
ity among cores is log2(p). With this information, the
total parallel time per iteration is

TP =p Vsh tc + 2log2(p) + (d+ 1)(dN/pesh tvn
+ dN/ped te) + dN/petq + Tctotal.

(10)

The major source of overhead due to communication
in (10) is Tctotal and p Vsh tc due to the fact that
the number of shared nodes always increases with the
number of mesh elements and the number of cores,
therefore p Vsh tc increases. Hence, excellent timing
results are expected in the cases for which the number
of interior nodes in each partition is large compared
with the number of shared nodes in the mesh.

5. NUMERICAL EXPERIMENTS

Our algorithm was implemented in C/C++ using the
message-passing interface (OpenMPI version 1.8.7).
We ran our experiments on the high performance
computing cluster available to us through the Ad-
vanced Computing Facility (ACF) at the University of
Kansas. More specifically, we ran the experiments on
twenty-one Dell R730 servers, each of them equipped
with 2x dodeca-core Intel Haswell processors running
at 2.5 GHz with 128GB of RAM, 1TB HDD, and FDR
Infiniband.

Figure 2: Domains used to test the parallel algorithm:
(a) bust, (b) bracket and (c) double cam tool

To test the performance of our parallel algorithm,
we constructed several tetrahedral meshes based on
three geometries from various applications and with
different characteristics. Figure 2 illustrates the three-
dimensional domains used in our experiments. We
chose the geometries from different online databases,
Fig. 2(a) is part of the 3dcadbrowser project [36],



while Fig. 2(b) and (c) are part of the French Insti-
tute for Research in Computer Science and Automa-
tion (INRIA) databases [37]). We used GHS3D [37]
and MeshLab [38] to generate a new surface mesh and
to scale the domain to meet our needs. Based on
these surface meshes, we generated tetrahedral volume
meshes using Tetgen [39] with the numbers of elements
specified in Tables 1 and 2. Finally, we randomly per-
turbed the nodes of each mesh to reduce their quality.
The resulting tetrahedral meshes are used to test the
performance of our parallel variational mesh quality
improvement (Parallel VMQI) algorithm.

We used the meshes for the bust and the double cam
tool domains to test the algorithm for strong scaling
and the meshes for the bracket domain to test weak
scaling.

Table 1: Size of tetrahedral meshes for the bust and the
double cam tool domains

Mesh # Nodes # Elements

bust 12,895,493 80,000,012
double cam tool 7,089,753 41,405,684

Table 2: Various mesh sizes for the bracket domain

Mesh # Nodes # Elements

450,960 2,500,032
864,028 5,000,025

bracket 1,716,222 9,999,990
3,269,784 19,999,978
6,497,224 40,000,000

12,957,609 80,000,037
24,177,335 159,745,245

For our first experiment, we employed a tetrahedral
mesh with approximately 80M elements for the bust
domain (see Fig. 3). We ran the algorithm with differ-
ent numbers of cores using dt = 10−14, errtol = 10−5,
and tol = 0.001 as input parameters (see Algorithm
2). These values guarantee that the algorithm will
run until convergence with an error of errtol = 10−5.
Figure 4 shows the average mesh quality versus the
number of iterations. This demonstrates the ability of
the algorithm to improve the average mesh quality.

Figures 5(a) and 5(b) show that for a small number of
cores, the runtime, and speedup achieved by the paral-
lel algorithm are very close to the ideal ones. A small
deviation in the speedup for a larger number of cores
is also observed. The deviation is clearer at sixteen
cores and it does not grow much for a higher num-
ber of cores. It is clear that the pre-processing step
(distribution of nodes, elements and boundary nodes

Figure 3: 80M element tetrahedral mesh of the bust
domain
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Figure 4: Average quality versus number of iterations for
the 80M element tetrahedral mesh of the bust domain

and identification of shared nodes) is a major source of
overhead that significantly contributes to the discrep-
ancy between the calculated and ideal speedup. On
the other hand, when the number of interior nodes on
each core is high compared with the number of shared
nodes, it is more likely that the communication steps
(when solving the differential equation) overlaps with
the calculations of the nodal velocities for the interior
nodes; therefore, the communication steps contribute
less to the performance degradation in such a case.
The runtimes reported in Fig. 5 are the average of
five experiments.

Our second experiment is a strong scaling experiment
using the double cam tool domain and a tetrahedral
mesh with approximately 40M elements (see Fig. 6),



Figure 5: (a) Total runtime and (b) speedup for the
Parallel VMQI algorithm for the 80M element tetrahedral
mesh of the bust domain

which is approximately half the number of elements
used for the first experiment. We decided to include
this test case so as to measure the performance of the
algorithm when the number of interior nodes per core
is reduced. In this case, it may be more challenging to
overlap communication with computation in an effec-
tive manner. The initial parameters (dt, errtol, tol)
are the same as in the first strong scaling test. Figure
7 shows the average mesh quality versus the number
of iterations for this tetrahedral mesh.

Figures 8(a) and 8(b) show the total runtime and
speedup for the 40M element mesh of the double cam
tool. The results are in general similar to the ones for
the first test case. This demonstrates that our parallel
algorithm scales very well with the resources used at
the University of Kansas. It is worth mentioning that
the maximum number of cores report in our experi-
ments is limited by our accessibility to the cluster.

Figure 6: 40M element tetrahedral mesh of the double
cam tool domain
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Figure 7: Average quality versus the number of iterations
for the 40M element tetrahedral mesh of the double cam
tool domain

We attribute the good results from the previous two
examples to the the ability of our parallel algorithm
to overlap communication with computation thus re-
ducing the runtime. When this is possible, the major
source of performance degradation, i.e, Tctotal from
equation (9), is reduced. Figures 9(a) and 9(b) show
the computation and communication time for the bust
and double cam tool test cases. The figure shows the
time employed by one core to calculate the nodal veloc-
ities for the interior nodes in its own region (computa-
tion). The communication time is the time employed
to communicate the shared nodes. Note that, for these
two cases, the computation time is always significantly
higher than the communication time, which guaran-
tees a good performance of the algorithm. Also, it is



Figure 8: (a) Total runtime and (b) speedup for the
Parallel VMQI algorithm for the 40M element tetrahedral
mesh of the double cam tool domain

expected that the computation time is reduced by half
each time we double the number of cores. However,
the communication time does not show a clear growth
pattern. Theoretically, for the ideal case, the commu-
nication time should exhibit logarithmic growth, but
in practice this is not the case. For our case, the com-
munication time is related to the architecture of the
cluster and with the distribution and availability of
nodes and cores at runtime.

We also performed a weak scaling test, which investi-
gates how the solution time changes with respect to
the number of cores (and assuming a constant work-
load per core), using various tetrahedral meshes for
the bracket domain (see Tab. 2 and Fig. 10). For
this experiment, we used the same parameters as in
the previous test case, except for the initial dt value,
which was dt = 10−6 for this case. We made this
change to better control the number of iterations in
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Figure 9: Communication and computation times em-
ployed for one iteration to calculate the nodal velocities
in one region of (a) 80M element mesh of the bust do-
main and a (b) 40M element mesh of the double cam
tool domain

each computational simulation. Figure 11 shows the
weak scaling result for the algorithm. We observe a
small deviation in the runtime for various numbers of
cores. This deviation is at most six seconds, which
is a deviation of less than 5% from the mean value.
This behavior is a typical weak scaling result on un-
structured mesh computations, as it is very difficult
to double exactly the problem size as the number of
cores is doubled. Also, since the number of iterations
for each simulation might be different (see Fig. 12),
the results from Fig. 11 correspond to the time the
algorithm takes to run only ten iterations.



Figure 10: 20M element tetrahedral mesh of the bracket
domain

Figure 11: Runtime versus number of cores to test the
weak scaling efficiency

6. CONCLUSIONS AND FUTURE
RESEARCH

We proposed a parallel variational mesh quality im-
provement algorithm and an associated implementa-
tion for the method in [20, 21] for distributed memory
machines. To distribute the workload among cores, we
use METIS to generate a mesh partition composed by
regions of connected elements. The algorithm identi-
fies the elements in each region that contain at least
one node that is shared by multiple regions (shared
nodes). After distribution of the data (nodal coordi-
nates, topology, boundary nodes), each core organizes
its corresponding elements into two sets, i.e., the el-
ements composed of only interior nodes and the ele-
ments which have at least one shared node.
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Figure 12: Quality versus number of iterations for the
bracket domain with (a) 2.5M, (b) 10M, and (c) 40M
elements

We employed the RKF45 method to solve the system
of ODEs associated with the interior nodes. For this



process, the parallel algorithm loops over all elements
on each core to calculate the nodal velocities for each
interior node. Whereas each core is able to calculate
the nodal velocities for the interior nodes within its
region, computing the nodal velocities of the shared
nodes requires communication among cores. To do
this efficiently, the algorithm first calculates the nodal
velocities for elements containing at least one shared
node. Then we communicate the partial nodal veloc-
ities of the shared nodes using a non-blocking collec-
tive instruction to overlap communication with com-
putation of the nodal velocities for the interior nodes.
When the number of interior nodes per core is high,
a total overlap of communication and computation is
achieved. Finally, the algorithm calculates the aver-
age quality of the mesh in each iteration and uses this
information to terminate the computations when no
significant improvement of the average mesh quality is
observed.

We tested our parallel variational mesh quality im-
provement algorithm on three different 3D domains
which were discretized using tetrahedral meshes. The
results of our numerical experiments show good strong
scalability and speedup for the meshes with 80M and
40M elements on up to 128 cores. The efficiency ob-
served in the experimental results is the consequence
of the complete overlap of communication and compu-
tation when calculating the nodal velocities (see Fig.
9). For the test cases presented in this paper, the
major source of overhead occurs in the pre-processing
step, i.e., where P0 distributes the data and identifies
the shared nodes. In addition to this, if the number
of interior nodes on each core is relatively small com-
pared with the total number of shared nodes, then the
communication time among cores increase relative to
the runtime. Hence we obtain a performance degra-
dation, as a complete overlap of communication and
computation is not possible. The weak scaling results
we obtained are typical for unstructured meshes.

For future research, we plan to explore different com-
munication strategies to minimize the memory con-
sumption and communication time. A local-blocking
communication strategy might decrease the perfor-
mance for small number of cores, but it will perform
better for a larger number of cores. In addition, a par-
allel pre-processing step will reduce the runtime and
memory consumption for P0. Another possible av-
enue for research is the adoption of a different domain
decomposition strategy such as node coloring. In re-
gards to applications, one can extent the same ideas
presented in this paper to the variational mesh adap-
tation algorithms such as the one in [20].
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